THE BEHAVIOR UNDER PROJECTION OF DILATING SETS IN A COVERING SPACE

BY BURTON RANDOL

ABSTRACT. Let M be a compact Riemannian manifold with covering space S, and suppose $d\mu_r$ ($0 < r < \infty$) is a family of Borel probability measures on S, all of which arise from some fixed measure by r-homotheties of S about some point, followed by renormalization of the resulting measure. In this paper we study the ergodic properties, as a function of r, of the corresponding family of projected measures on M in the Euclidean and hyperbolic cases. A typical example arises by considering the behavior of a dilating family of spheres under projection.

Suppose T^n is the *n*-dimensional integral torus, regarded as the quotient of R^n by the lattice Γ of integral translations, and suppose $d\mu$ is a Borel probability measure on R^n , i.e., $d\mu$ is a real, nonnegative Borel measure on R^n having total mass 1. By projection, $d\mu$ gives rise to a Borel probability measure dm on T^n , if we define the measure of a set in T^n to be the measure with respect to $d\mu$ of its total preimage in R^n with respect to the projection map from R^n to T^n .

For various types of Γ -invariant functions f on \mathbb{R}^n , or, what is the same thing, functions on \mathbb{T}^n , it is natural to study the difference

(1)
$$\int_{T^n} f(x) dx - \int_{T^n} f(x) dm(x),$$

where dx is normalized Lebesgue measure. This quantity arises, for example, in the study of equidistribution of sequences, and in the study of ergodic properties of irrational lines in T^n .

In order to study (1), suppose, for the moment, that f is C^{∞} with Fourier series $\sum c_N e^{2\pi i(N,x)}$, and suppose $\Phi(y) = \int e^{2\pi i(x,y)} d\mu(x)$ is the Fourier transform of $d\mu$. Then it is easily checked that the Nth Fourier coefficient of dm(x) is $\Phi(-N)$, and since f is smooth the Parseval equality can be applied to conclude that

$$\int_{T^n} f(x) dm(x) = \sum_{n=0}^{\infty} c_n \Phi(N) = c_0 + \sum_{n=0}^{\infty} c_n \Phi(N),$$

where the prime indicates that the origin is omitted from the summation.

But $c_0 = \int_{T^n} f(x) dx$, so

(2)
$$\int_{T^n} f(x) dx - \int_{T^n} f(x) dm(x) = \sum' c_N \Phi(N).$$

I.e., from our point of view, the study of (1) is equivalent to the study of the asymptotic behavior of Φ . It is the purpose of this paper to illustrate this principle

Received by the editors October 21, 1983. 1980 Mathematics Subject Classification. Primary 22D40. in a few, by no means exhaustive, cases. In particular, in what follows we will be concerned with the situation in which there is a family $d\mu_{\tau}$ (0 < r < ∞) of probability measures on R^n , all of which arise from some fixed measure by r-homotheties of the underlying space, followed by renormalization of the resulting measure.

It is a pleasure to thank Dennis Sullivan for a conversation which gave rise to the present paper, in which he asked what one could say about the ergodic properties of the projection of a progressively dilating curvilinear body on T^n , and we begin with a theorem which deals with this question.

THEOREM 1. Suppose C is the smooth boundary of a compact convex n-dimensional body in \mathbb{R}^n , and suppose its Gaussian curvature, i.e., the Radon-Nikodym derivative of the Gauss map, is everywhere positive. For a continuous Γ -invariant function f on \mathbb{R}^n having Fourier coefficients $\{c_N\}$, define, as suggested by $\{1\}$,

$$D_r(f,C) = \int_{T^n} f(x) \, dx - \frac{r^{-(n-1)}}{\text{area}(C)} \int_{rC} f(x) \, ds_x,$$

where $ds_x = (n-1)$ -dimensional Lebesgue measure. Then if $\sum' |c_N| |N|^{-(n-1)/2}$ converges, we have

$$D_r(f,C) = O(r^{-(n-1)/2}).$$

REMARKS. 1. The convergence criterion is certainly satisfied if, for example, f is C^m , for m > (n-1)/2.

- 2. This theorem shows that subject to the convergence criterion, the projected mass is equidistributed in the limit.
- 3. It is possible to drop the assumption of strictly positive curvature in many cases, although at the cost of increased intricacy in the statements and proofs of the corresponding theorems (cf. [5, 6]). One can also treat the case of the dilation of a (k-1)-dimensional hypersurface lying in a k-plane of R^n , or for that matter, the case of a dilating solid body. Rather than enter into a general discussion of these questions at this time, we will, in Theorem 2, take up the important and relatively easily handled special case of the dilation of a rectilinear k simplex $(1 \le k \le n)$.

PROOF OF THEOREM 1. Assume for the moment that f is C^{∞} . Denote by $\Phi(y)$ the Fourier transform of normalized Lebesgue measure on C, and by $\Phi_{\tau}(y)$ the Fourier transform of normalized Lebesgue measure on rC. Then

$$egin{aligned} \Phi_r(y) &= rac{r^{-(n-1)}}{ ext{area}(C)} \int_{ au C} \ e^{2\pi i (x,y)} \ dx_x \ &= rac{1}{ ext{area}(C)} \int_C \ e^{2\pi i (rx,y)} \ ds_x \ &= \Phi(ry), \end{aligned}$$

since the r can be shifted to y. Therefore by (2),

$$D_r(f,C) = \sum ' c_N \Phi(rN).$$

Now under the hypotheses on ∂C , it is well known [4] that $\Phi(y) = O(|y|^{-(n-1)/2})$, and the result follows immediately if f is C^{∞} . If f is merely continuous, and $\sum' |c_N| |N|^{-(n-1)/2}$ is convergent, we convolve f with an approximate δ -function

 $\delta_{\varepsilon}(x)$ on T^n , which is C^{∞} , nonnegative, supported in the ball of radius ε , and has integral 1. Set $f_{\varepsilon} = f * \delta_{\varepsilon}$. Then clearly for any fixed r, $D_r(f_{\varepsilon},C) \to D_r(f,C)$ as $\varepsilon \to 0$. Moreover if we denote the Fourier coefficients of f_{ε} by $c_N(\varepsilon)$, then $c_N(\varepsilon) = c_N c_N^{\#}(\varepsilon)$, where $c_N^{\#}(\varepsilon)$ is the Nth Fourier coefficient of $\delta_{\varepsilon}(x)$. But $|c_N^{\#}(\varepsilon)| \le 1$ and for each N, $c_N^{\#}(\varepsilon) \to 1$ as $\varepsilon \to 0$. It follows from the dominated convergence theorem that $D_r(f,C) = \sum_{j=1}^{r} c_N \Phi(rN)$, which proves the theorem.

In order to prove Theorem 2, which treats the case of a dilating rectilinear k-simplex $(1 \le k \le n)$, we first need to develop some simple facts about the Fourier transform of such a simplex (cf. [5, 11]).

Suppose C is a rectilinear k-simplex in \mathbb{R}^n , which we may assume contains the origin, since this can always be brought about by a translation, which has the effect of multiplying the Fourier transform by a character of absolute value 1. Then it is easy to see that the Fourier transform Φ of C can be expressed in the form

(3)
$$\Phi(y) = \int_C e^{2\pi i (x, P(y))} ds_k(x),$$

where $ds_k(x)$ is k-dimensional Lebesgue measure on the k-plane S_k containing C, and P(y) is the projection of y on S_k . By the divergence theorem, (3) is equal to

$$\frac{1}{2\pi i |P(y)|} \int_{\partial C} \ e^{2\pi i (x,P(y))} (\theta(y),n(x)) \, ds_{k-1}(x),$$

where $\theta(y) = (y)/|P(y)|$, $ds_{k-1}(x)$ is (k-1)-dimensional Lebesgue measure on ∂C , and n(x) is the external normal to ∂C in S_k . Note that $(\theta(y), n(x))$ is a constant of absolute value ≤ 1 on each face of ∂C .

By repeating the above argument, with C replaced by a (k-1)-face of C, and continuing in this fashion until we end with 0-dimensional faces, we ultimately see that $\Phi(y)$ can be expressed as a sum of terms, each one of which is of the general form

(4)
$$c(y)(2\pi i)^{-k} \prod_{j=1}^{k} |P_j \circ P_{j+1} \circ \cdots \circ P_k(y)|^{-1}$$

where $|c(y)| \leq 1$, and $P_1, \ldots, P_k = P$ is a family of projections onto a nested collection $S_1 \subset S_2 \subset \cdots \subset S_k$ of subspaces of R^n having dimensions $1, \ldots, k$, respectively (cf. [5, 10]).

Since the S_j 's are nested, $P_m \circ P_n = P_{\min(m,n)}$, so (4) becomes

(5)
$$c(y)(2\pi i)^{-k} \prod_{j=1}^{k} |P_j(y)|^{-1}.$$

THEOREM 2. Suppose f is a continuous Γ -invariant function having Fourier coefficients $\{c_N\}$. Keeping notation as in Theorem 1, suppose C is a k-dimensional rectilinear simplex in R^n , and suppose, for any flag $S_1 \subset S_2 \subset \cdots \subset S_k$ of subspaces of R^n generated by C in the previously discussed manner, with associated projections P_1, \ldots, P_k , that the series

$$\sum_{N}'|c_{N}|\left(\prod_{j=1}^{k}|P_{j}(N)|^{-1}\right)$$

is convergent. Then $D_r(f,C)$ can be expressed as a finite sum of terms, each one of which is of the form

$$c(rN)r^{-k}\sum_{N}{'}c_{N}\prod_{j=1}^{k}|P_{j}(N)|^{-1},$$

and arises from a flag $S_1 \subset \cdots \subset S_k$ in the previously discussed manner. In particular,

 $D_r(f,C) = O(r^{-k}).$

PROOF. As in the proof of Theorem 1, note that $\Phi_r(y) = \Phi(ry)$, so, for smooth f, we have, by (2), $D_r(f,C) = \sum_{j=0}^{r} c_N \Phi(rN)$. By (5) this proves the theorem for smooth f. The proof for general continuous f is them completed by the method used in the proof of Theorem 1.

EXAMPLE. Suppose C is a 1-dimensional segment in R^n , and suppose (x_1, \ldots, x_n) is an orthonormal coordinate system such that Γ consists of points having integral coordinates. Note that in this case there is only one flag, which contains a single 1-dimensional subspace, and only one associated projection P_1 . Let S be any 2-dimensional subspace of R^n defined by the vanishing of all but two of the x_j 's, and let C' be the projection of C onto S. Then it follows easily from Roth's theorem (cf. [10]) that if C', regarded as a line within S, has an irrational algebraic slope, then for any $\varepsilon > 0$, $|P_1(N)| > |N|^{-(1+\varepsilon)}$ for all but a finite number of lattice-points in R^n . If therefore f is a continuous Γ -invariant function with $c_N = O(|N|^{-(n+1+\delta)})$ for some $\delta > 0$, Theorem 2 implies that $D_r(f, C) = O(r^{-1})$.

We conclude with some remarks about the hyperbolic case. In this case the role of R^n is played by n-dimensional hyperbolic space H^n , and Γ is a discontinuous group acting on H^n . Additionally, it is natural to assume that the measure being dilated has spherical symmetry around the point x about which the dilation occurs. We will briefly illustrate things for the typical case in which $d\mu_T$ is normalized Riemannian measure on a sphere of radius T about a point $x \in H^3$, and Γ is a torsion-free cocompact lattice. The role of C is then played by the unit sphere in H^n . The treatment of the hyperbolic case in all dimensions is essentially the same, but the transforms which arise in H^3 are particularly simple. We remark that Peter Sarnak has also studied the case of a dilating sphere in H^3 using the wave equation.

Assume for simplicity that f is C^{∞} on $M = \Gamma \backslash H^3$ and has the Fourier expansion $\sum c_n \varphi_n$, where $\varphi_0, \varphi_1, \ldots$ is a complete orthonormal set of eigenfunctions for the Laplacian on M, corresponding to eigenvalues $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots$. (Note that $\varphi_0(x) \equiv A^{-1/2}$, where A is the volume of M. Note also that $c_0 = A^{-1/2} \int_M f$.)

If, now, $d\mu_T(x, y)$ is normalized hyperbolic area measure on the sphere of radius T about a fixed point $x \in H^3$, then the projected measure $dm_T(x, y)$ on M will be given by

(6)
$$dm_T(x,y) = \sum_{\gamma \in \Gamma} d\mu_T(x,\gamma y).$$

It is easy to analyze the right-hand side of (6) using techniques connected with the Selberg trace formula [3, 8], and we find that we can compute the effect of $dm_T(x,y)$ on a C^{∞} function on M by the formula

$$\int_C f(y) dm_T(x,y) = \frac{1}{2} \sum c_n h_T(r_n) \varphi_n(x),$$

where there are two r_n 's for each eigenvalue λ_n , defined by $\lambda_n = 1 + r_n^2$ (if $r_n = 0$ is present it is counted with multiplicity 2), and the function h_T is given by $h_T(u) = (\sin uT)(u \sinh T)^{-1}$ [1, 2, 9].

Now

$$c_n = (f, \varphi_n)$$

$$= \lambda_n^{-i}(f, \Delta^i \varphi_n) \text{ for any } i \ge 1$$

$$= \lambda_n^{-i}(\Delta^i f, \varphi_n) \le \lambda_n^{-i} \|\Delta^i f\|_2$$

by the Cauchy-Schwarz inequality.

On the other hand, it is well known that for j large enough a fundamental solution for Δ^j on M is given by an integral operator with continuous kernel K(x,y). Since $\Delta^j \varphi_n = \lambda_n^j \varphi_n$, this implies

$$\varphi_n(x) = \lambda_n^j \int_M K(x, y) \varphi_n(y) dy,$$

so again by the Cauchy-Schwarz inequality, $|\varphi_n(x)| \leq c\lambda_n^j$ for some fixed j. By taking i sufficiently large, we see that given p>0, the series $\sum c_n |\varphi_n(x)|$ is eventually dominated by the series $\sum \lambda_n^{-p}$, and since the latter is convergent for large p, we conclude that for any x, $\sum c_n |\varphi_n(x)|$ is convergent. Since the two r_n 's corresponding to $\lambda_0=0$ are i and -i, and since $c_0h_T(\pm i)\varphi_0(x)=A^{-1}\int_M f$, which is the integral of f over M with respect to normalized measure, we conclude that the quantity $D_T(f,C)$, defined as before, is given by $\frac{1}{2}\sum' c_nh_T(r_n)\varphi_n(x)$, where the prime means that the values $r_n=\pm i$ are omitted from the sum. In particular, if M has small eigenvalues, i.e., if $\lambda_1\in(0,1)$, then

$$D_T(f, M) = O((\sin r_1 T)(\sinh T)^{-1}) = O(e^{-\alpha T}),$$

where $\alpha = 1 - |r_1|$, with $\lambda_1 = 1 + r_1^2$.

If M has no small eigenvalues, then $D_T(f, M) = O(e^{-T})$.

REFERENCES

- B. Randol, The Selberg trace formula, Eigenvalues in Riemannian Geometry by Isaac Chavel, Academic Press (to appear).
- 2. P. Cohen and P. Sarnak, Discontinuous groups and harmonic analysis (in preparation).
- 3. D. Hejhal, The Selberg trace formula for PSL(2, R), Springer-Verlag, 1976.
- 4. E. Hlawka, Über Integrale auf Konvexen Körpern. I, Monatsh. Math. 54 (1950), 1-36.
- B. Randol, On the Fourier transform of the indicator function of a planar set, Trans. Amer. Math. Soc. 139 (1969), 271-278.
- 6. _____, On the asymptotic behavior of the Fourier transform of a convex set, Trans. Amer. Math. Soc. 139 (1969), 279-285.
- P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math. 34 (1981), 719–739.
- 8. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87.
- 9. N. Subia, Formule de Selberg et formes d'espaces hyperboliques compactes, Lecture Notes in Math., vol. 497, Springer-Verlag, 1975.
- M. Tarnopolska-Weiss, On the number of lattice-points in planar domains, Proc. Amer. Math. Soc. 69 (1978), 308-311.
- 11. _____, On the number of lattice-points in a compact n-dimensional polyhedron, Proc. Amer. Math. Soc. 74 (1979), 124-127.

DEPARTMENT OF MATHEMATICS, CUNY GRADUATE CENTER, 33 WEST 42 STREET, NEW YORK, NEW YORK 10036